(a) A + B = B + A
(b) A B = B A
Nilai Tabel Kebenarannya
A | B | A+B | B+A |
0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 |
Nilai Hukum Komutatif Benar
(a) (A + B) + C = A + (B + C)
(b) (b) (A B) C = A (B C)
Nilai Tabel Kebenarannya
A | B | C | A+B | B+C | AB | BC | (A+B)+C | A+(B+C) | (AB)C | A(BC) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Nilai Hukum Benar
(a) A (B + C) = A B + A C
(b) A + (B C) = (A + B) (A + C)
Nilai Tabel Kebenaran
A | B | C | A+B | A+C | B+C | AB | AC | BC | A(B+C) | (AB)+(AC) | A+(BC) | (A+B)(A+C) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Nilai Hukum Benar
(a) A + A = A
(b) A A = A
Nilai Tabel Kebenaran
A | A+A | AA |
0 | 0 | 0 |
1 | 1 | 1 |
Nilai Hukum Benar
5.
(a) AB+AB’=A
(b) (A+B)(A+B’)=A
Nilai Tabel Kebenaran
A | B | B’ | AB | AB’ | A+B | A+B’ | AB+AB’ | (A+B)(A+B’) |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
Nilai Hukum Benar
(a) A + A B = A
(b) A (A + B) = A
Nilai Tabel Kebenaran
A | B | AB | A+B | A+AB | A(A+B) |
0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 |
Nilai Hukum Benar
7.
(a) 0 + A = A
(b) 0 A = 0
Nilai Tabel Kebenaran
A | 0 | 0+A | 0A |
0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 |
Nilai Hukum Benar
8.
(a) 1 + A = 1
(b) 1 A = A
Nilai Tabel Kebenaran
A | 1 | 1+A | 1A |
0 | 1 | 1 | 0 |
1 | 1 | 1 | 1 |
Nilai Hukum Benar
9.
(a) A’ + A = 1
(b) A’A = 0
Nilai Tabel Kebenarannya
A | A’ | A+A’ | AA’ |
0 | 1 | 1 | 0 |
1 | 0 | 1 | 0 |
Nilai Hukum Benar
10.
(a) A + A’B = A+B
(b) A (A’+B) = AB
Nilai Tabel Kebenaran
A | B | A’ | AB | (AB)’ | A+B | A’+B | A+A’B | A(A’+B) |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
Nilai Hukum Benar
11. TheoremaDe Morgan's
(a) (A+B)’ = A’B’
(b) ( AB )’= A’ + B ‘
Nilai Tabel Kebenaran
A | B | A+B | AB | (A+B)’ | (AB)’ | A’ | B’ | A’B’ | A’+B’ |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Nilai Hukum Benar
0 komentar:
Posting Komentar